公告通知

【学术报告】Perovskite Light-Emitting Diodes based on Solution-Processed, Self-Organized Multiple Quantum Wells

来源:武汉光电国家研究中心    作者:    发布时间:2018年09月13日

报告题目:Perovskite Light-Emitting Diodes based on Solution-Processed, Self-Organized Multiple Quantum Wells

报告时间:2018年9月15日星期六下午4点

报告地点:武汉光电国家研究中心A301

邀请人:韩宏伟教授

 

王

Jianpu Wang has been a professor at Nanjing Tech University since 2013. His research interests are organic/perovskite semiconductor devices and device physics, aiming for display and energy applications. Prior to NanjingTech, he was a postdoctoral research associate studying organic magnetic field effect in Cavendish Laboratory, University of Cambridge in 2009-2013. And he did his Ph.D study also in Cavendish from 2006 to 2009, when he investigated organic semiconductor/inorganic nanocrystal devices. Prof. Wang worked as a research engineer in Samsung Electronics in South Korea in 2003-2006, for developing OLED displays by using ink-jet printing technology.

  


Perovskite Light-Emitting Diodes based on Solution-Processed, Self-Organized Multiple Quantum Wells

 

Jianpu Wang

Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University

iamjpwang@njtech.eud.cn

 

Solution-processed light-emitting diodes (LEDs) are attractive for applications in low-cost, large-area lighting sources and displays. Organometal halide perovskites can be processed from solutions at low temperatures to form crystalline direct-bandgap semiconductors with intriguing optoelectronic properties. However, their electroluminescence (EL) efficiencies are limited by either exciton quenching in the two-dimensional perovskites or imperfect film morphologies in the three-dimensional perovskites. I will present that strikingly high-efficiency, room-temperature EL can be achieved from solution-processed hybrid perovskite films consisting of self-organized multiple quantum wells (MQWs) with an energy cascade. The perovskite MQW films deposited at low temperatures exhibit uniform morphology and high photoluminescence efficiencies resulting from efficient cascade energy transfer between the quantum wells. LEDs based on perovskite MQWs show peak external quantum efficiency (EQE) up to 11.7% with good operation stability. Our study shows that perovskite MQWs are promising as a new class of solution-processed emitters for LEDs.

 

References:

1. Adv. Mater. 2015, 27, 2311

2. Nat. Photonics 2016, 10, 699

3. Adv. Mater. 2017, 29, 1606600

4. Nat. Comm. 2018, 9, 608

5. Nature 2018, in press