论坛通知

武汉光电论坛第140期: 微纳光纤及其应用:研究进展及未来机遇

来源:武汉光电国家研究中心    作者:    发布时间:2018年05月25日

武汉光电论坛第140期


照片


报告题目:微纳光纤及其应用:研究进展及未来机遇

Optical Microfibers and Nanofibers: Recent Progress and Future Opportunities


时     间:2018年5月31日10:00-12:00

地     点:光电国家研究中心A101

报 告 人:童利民  教授,浙江大学

邀 请 人:光电子器件与集成功能实验室

 

报告人简介:

童利民, 1991、1994年先后毕业于浙江大学物理系,获学士和硕士学位;1997年毕业于浙江大学材料系,获博士学位并留校工作。2001年获包兆龙包玉刚奖学金资助,赴美国哈佛大学Mazur研究组访问进修。2004年回浙江大学工作,组建微纳光子学研究组(www.nanophotonics.zju.edu.cn)。现为浙江大学光电科学与工程学院教授,教育部长江学者特聘教授。主要从事纳米光子学原理、结构及器件,以及光纤技术方面的研究工作。首次实现亚波长直径纳米光纤的低损耗光学传输、纳米光纤-表面等离激元近场高效耦合、纳米线-硅基片上集成等工作,研制成功纳米光纤传感器、纳米线单模激光器、表面等离激元激光器、超快全光调制器等新型微纳光子器件。在 Nature 等发表学术论文 200 余篇,出版学术专著 1 本。多项研究结果被Nature、Nature Nanotechnology、Nature Materials等报道。曾获国家杰出青年科学基金、中国光学学会“王大珩中青年科技奖”、中国青年科技奖、霍英东教育基金会青年教师奖、国防科学技术奖、浙江省自然科学奖、OSA Fellow 等荣誉或资助。担任美国光学学会Optica期刊副编辑、Chinese Optics Letters、Photonic Sensors、Chinese Physics B、Sensors等期刊编委、Optics Communications 期刊咨询编辑,以及 美国光学学会 R. W. Wood 奖评奖委员会主席等学术兼职。指导博士研究生获得全国优秀博士学位论文提名、全国光学优秀博士学位论文等奖励。


Biography:

Limin Tong received his BSc degree (1991) and MSc degree (1994) in Physics, and PhD degree (1997) in Materials Science and Engineering, all from Zhejiang University, China. In 1997 he joined Department of Physics at Zhejiang University as an assistant professor. From 2001 to 2004, he joined Mazur Group at Harvard University as a visiting scientist, and returned Zhejiang University in 2004, where he established a Nanophotonics Group (www.nanophotonics.zju.edu.cn). He is currently a professor of the College of Optical Science and Engineering at Zhejiang University. His research interests are in nanophotonics and fiber optics, with emphases on nanofiber/nanowire photonics, nanoplasmonics and devices. He received the Chang Jiang Scholars (Ministry of Education, China) in 2012, the WANG Daheng Optics Prize (Chinese Optics Society) in 2007, and the National Science Foundation for Outstanding Young Talents (NSFC) in 2004, respectively. He is a fellow of the Optical Society of America, an Associate Editor of Optica, and has been serving as Advisory Board Member for Optics Communications, Editorial Board Member for Chinese Optics Letters, Photonic Sensors, Chinese Physics B and Sensors. 



报告摘要:

无论对于基础研究还是技术应用,在更小的维度上调控光场始终是一个具有吸引力的研究方向。在各种微纳光学结构中,一维导波结构在单模传输光场时所需的时间、空间、材料及光程最小,灵活度最高,因而具有特殊的重要性,微纳光纤即为其中典型的结构之一。使用物理拉伸法制备的微纳光纤,在表面质量和直径均匀度方面均远优于所有其他方式制备的微纳光波导,因而在同尺寸波导中具有最低光学导波损耗。由于纤芯与包层(通常为空气或水等低折射率介质)具有高折射率差,微纳光纤可以进行强约束及大比例倏逝场导波。比如,通过控制“波长-直径”比,导模倏逝场比例可以达到80%以上,并同时维持较小的整体模场尺寸,有利于增强传输光场与环境的强局域相互作用。

本报告将介绍我们最近在微纳光纤方面取得的进展,包括光纤制备、功能化及其应用,特别是在微纳光纤传感、超快光调制及片上集成方面的工作。同时,也顺带提及一些半导体纳米线等类似结构(在一些文献中也称为“纳米光纤”)完成的类似功能。最后,简单讨论该研究方向所面临的挑战及未来机遇。


Abstract: 

Manipulating light on a lower dimension is always of intense interest to both fundamental research and technological applications. Among various nanostructures for low-dimensional photonics, the one-dimensional microfiber or nanofiber (MNF) is of great importance owing to its capability of routing tightly confined light fields in single-mode with least space and material requirement, minimized optical path, and high mechanical flexibility. Free-standing optical MNFs fabricated by physical drawing techniques surpass micro/nanowaveguides fabricated by almost all other means in terms of sidewall smoothness and diameter uniformity, conveying their low waveguiding losses. With high index contrast  between the core and the surrounding, an MNF can guide light with tight optical confinement and/or high fractional evanescent fields. For example, by increasing wavelength-to-diameter ratio of a nanowire, the fractional power of the evanescent fields in the guiding modes can be enlarged to over 80% while maintaining a small effective mode area, which may enable highly localized near-field interaction between the guided fields and the surrounding media. 

This talk will summarize our recent progress in optical MNFs from fabrication, functionalization to application, with emphases on MNF sensing, optical modulation and on-chip integration. Similar one-dimensional photonic structures such as semiconductor nanowires (also called “nanofiber” in recent literatures)  will also be mentioned. Finally, challenges and future opportunities in this field will be briefly discussed.



武汉光电论坛是武汉光电国家研究中心倾力打造的公益性高端学术系列讲座,共享光电知识盛宴,诚邀您的参与!



第100期起报告视频,访问http://www.wxbgt.com/,搜索“武汉光电论坛”字样

第71-99期报告视频,访问http://mooc.chaoxing.com/course/2018895.html

更早期视频参见 http://whof.wnlo.hust.edu.cn/

或下载超星APP“学习通”,在首页搜索“武汉光电论坛”